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Theorem on the Maximum Temperature Gradient
A, G, TEMKIN
Zh. Tekh, Fiz., vol. 25, No. 3, 1955, pp. 534 - 54O
1. The intensification of the heat emission of a solid under invariant
external conditions is usually attained by subdivision, by increasing the sur-
face without increasing its weight, i.e., of the volume. Such an isochoric
increase of the body surface causes a growth of its integral criterion of the

form:

’s P VF
(1) ES==-Z—V 3 ls-{.‘/g 3 lvs {.W

It will be shown in the present paper that the growth of the thermal flow
velocity:
(2) Q' = 5q *r
for an isochoric increase in the surface S , occurs simultaneously with a
decrease in the density of the thermal flow speed:

(3) q = - MV8)g = a6 (7)

on the body surface. Such a decrease in the density of the thermal flow speed
(specific thermal flow) follows directly from the decrease in the mean value
of the temperature gradient on the body surface (ve) g as the Es kind of
criterion increases or from the decrease in the me an temperature of the sur-

face GS(T) together with the increase in the Es simplex. In other words:

o)

2. It was indicated in [7], that the maximum temperature Gm('r) of a
body is higher, the higher the Es criterion of the body under the same

remaining conditions.
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This law is illustrated well in the graph of the work cited, which we
borrowed from [3]. The recent experiments and computations of Veinik [1,2]
confirmed this fact conclusively.

But if Gm(T,Es) increases but GS(T,ES) decreases as Es increases,
then it can be stated that the difference:

(5) A8 = Qm(T,ES) - QS(T,ES)

increases along with the Es criterion,

A warmest and a coldest point exist on the body surface at each moment
T . It is completely possible that such points with extremum temperatures
are several. If two points of the surface - one with a maximum and the other
with a minimum temperature - be joined by a line lying entirely on the surface,
then, clearly, at least one point on this line will be at the temperature
which is exactly equal to the average surface temperature 68(1) at a given
time v .

Let us join the warmest point of the body, which has the Qm(T) temper-
ature, to that surface point P(?S) with a temperature equal to the average
surface temperature GS(T) , by a segment of length { . Understandably, a
surface point close to P(F;) can be taken where the temperature would be
somewhat lower than QS(T) .
let us call the ratio:

6_(t) — 8(¥ %)
l
the average value of the temperature gradient on this segment. According to

(6) [ve]

av

the theorem of the mean, a point P(?;v) must exist on this segment, where

the absolute value of IVQ(;;V;T)I exactly equals IVGIav :

(7) V(%) = [ve|
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It was shown earlier [8] that, for a k -dimensional body:

38
v k-1
(8) 5 - ZV(VG)SEsk

and, consequently, the average value of the temperature gradient on the body
surface (ve)s can be made less than any quantity assigned beforehand by a
suitable choice of the Es criterion, i.e., by a suitable isochoric body
deformation, for the same not-too-small Bi and Fo , and therefore, less
than [veléw , which increases along with BEs . |

The reservation relative to sufficiently large magnitudes of the Bi
and Fo criteria is completely natural. If the intensity of the heat
exchange is very small, which is characterized by small values of the Bi
criterion, then the temperature field should be considered practically homog-
eneous and its gradients will generally be very small. If we consider the
heat emission process at its very beginning, then the whole temperature field
is slightly different from the original temperature distribution which is
characterized by the absence of heat flow and, consequently, by the absence
of temperature differences.

Therefore, it can be stated that, for not too small Bi and Fo wvalues
in bodies of complex enough shape, which is characterized by a high Es crit-
erion, points exist within the body at which the absolute value of the temper-
ature gradient is larger than the average value of the temperature gradient
on the body surface:

(9) ]ve(z';v,r) | (ve)q

This statement expresses the theorem on the maximum temperature gradient.
Hence, there are points on bodies of complex configuration, where the specific
thermal flow is larger than on the body surface, on the average,

But at the body temperature center, the gradient of a point where the
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temperature is a maximum must equal zero:
(10) ve(?-m,fr) =0

Because of the above-mentioned theorem, the value of the temperature
gradient on certain lines issuing from the center is higher than on the sur-
face, on the average. Consequently, the absolute value of the temperature
gradient, on lines which join the temperature center of a body of complex
shape to those points of the surface where the temperature equals the average
surface temperature at a given time GS('r) , increases from zero to a certain
maximum as the center moves toward the surface and, furthermore, decreases to
the VS(?S,T) value on the body surface. The curve, showing the variation
of the temperature as a function of the distance from the body center, must
have an inflection point on such a line.

3. The location of the point at which the absolute value of the temper-
ature gradient is a maximum is determined from the system of equations:

ave

(11) V8 === =0 (u = x,y,2)
for a three dimensional body and from the equations:
2% 2% _
ox 5 2 Oy oxdy
2 20 9% , 38 3% _

3% 39y T 3y o2
for a two-dimensional.
The specific heat flow has its highest value at this point of the body.
As the example cited below shows, this point moves, as the Bi criterion
decreases, to the body boundary and will not, in general, be found within or
on the body surface for small Bi values, In other words, the thermal flow
q = A]Vt] increases monotonically, for small Bi , as the center of the body

is left behind. The body projections are cooled more rapidly for large Bi
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than are the fundamental body mass, the temperature differences within the
limits of these projections are insignificant and a certain part of the heat
moves from the basic body mass to these projections because of the presence
of the temperature differences between the basic body mass and the projection
mass.

Iet us clarify the location of the point through which the heat supply
to the body projections occurs. These points determine, simultaneously, just
what part of the body should be considered basic and what part as projection.

The motion of heat within a body is accomplished along thermal current
lines which are orthogonal to the field isotherms. Since we consider a two-
dimensional body as an example, then it is expedient for the later investig-
ation, to carry out the plane problem. The differential equation of the
thermal current line is:

(13) dy 28 _ 36

E_Z .0

dx ox oy
It is obtained from the orthogonality condition of the isotherm and the thermal

current line, The length of a thermal current line element is:
2 2
o8 36 dx
() - &) &) F
ox

Let us calculate the temperature drop along such a line. In connection

with (14), we obtain after certain transformations:

) . /@ - (]

This result is natural because the highest temperature drop occurs along

the current line and

(16) 2. |79

Iet us determine the derivative of the gradient along a length of the



current line through the formmla:

<m gl ol g

Using (14), we will have:
) 228 % 26 20 2e(ae)2
%oy 5x oy T
(18) 2% oy°

S )

J

Therefore, at points where the thermal flow is a maximum, the condition

holds: ,
(19) .a__z_e.<§.§2+2329 9292 9@.(—.2=0
ax2 ox dXdy ox oy ay2 ay

L. It was indicated above that for low values of the Fo criterion,
which corresponds to the start of the process, i.e., to low values of the
time, there are no large temperature gradients within the body and the ther-
mal flow increases monotonically with withdrawal from the body center.

Consequently, the theorem on the maximum temperature gradient can gppear
to be incorrect in the irregular region stage and to be completely true in
the regular region stage. The temperature of each body point varies expon-
entiallyvin the regular region stage:

(20) o(Z,7) = 9(?,'1:0) exp [-m(7 - 'ro)]
where T, is the moment the regular region starts, m is the cooling rate.

As is seen from (20), the isotherm shape in the regular region stage is
invariant; the temperature of each isotherm decreases exponentially. The
geometry of the temperature field in the regular region is independent of
the time and only the geometric assumption, correct at the start of this
stage (7t = 1:0) , is correct in the rest of the time (<« >.'ro) ; consequently,
we will consider the temperature field at the start of the regular region

stage, when 7 = Ty -
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As the object to which we apply our theory should be chosen a body from
which a body with various shape criterion values can be obtained by a vari-
ation of the dimensions. It is most convenient to select a rectangular pro-
file as such a body. Profiles with Es criterion values from 4.00 to o
can be obtained by varying the ratio of the sides of the rectangle.

The temperature of an infinitely long rectangular prism at time < in

the regular region stage is given by the dependence:

(21) e(%,t) = 8. °°° Equ cos % exp [-m(~ - 'to)]

where T, » as was indicated above, is the moment the regular region starts;

B’.L and R,_ are half the sides of the rectangle, parallel to the Ox and

2
Oy coordinate axes, Rl >R2 HE Y and W, are the least roots of the

characteristic equations:

a
(22) wtanp =5 R (n =1,2)

eom is the temperature of the prism center at the start of the regular region
(23) G(0,0,'ro) = eom
The temperature of the medium is taken to be constant and equal to zero.
let us clarify the location of the maximum temperature gradient depend-
. a .
ing on the Biy = i}/qﬁ; criterion, In order to determine the point of
the maximum gradient in correspondence with (12) and (21), the system of

equations obtained is:

3 b 4 2 b 4
(%) cos %f co's2 :zy ;;_Ll ;2)% cos R—l— ;11 in2 ;—zz =0
2
_(%);3003-;2—3’-31112-;{-:5111;—{ ( )cosz-%fcosR——smg—gno
_ ) ‘

2 2 2 2
from which are found the coordinates of the point of the max.|Ve| :

(2L)




(25}

or, taking (22) into account, these expressions can be transformed into:

tan

1 !

(é =q uctmr—m “'2

(26) 1 tan u,
1 "18 u'—z arctanm-u—l-

For a square, for example, Rl = R2 =R, by = By = Wb and
T
(27) S - N = m
that is, the point on the square where the thermal flow is a maximum is
certainly on its diagonal. The characteristic number p for Bi = @ is
n

3 and

(28) =y =3

the max., |V8| point is at the middle of the segment joining the center to

a vertex of the square. For Bi =-E

(29) Z=7 =1

that is, the greatest heat flow 1s observed at the vertex of the square.
Evidently, for %R<ﬁ , when w< [, the point with max.|Ve| will not,
generally, exist in the square and the temperature gradient on each thermal
current line will increase monotonically from zero at the center of the square
to a corresponding magnitude on the boundary.

Below is given a table of values of the { = "l coordinates depending

Table 1 . _ aR
Point of the max. |[V8] in the‘7 square " the Bl == quantity.
0 }';%Sh f ('):)z) 1810 0.551 This displacement of the
3'? 8'33@ 20 8-§§§ heat flow from the body
28 823; 8&’0 gggg boundary to its center as
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the BiV criterion increases is illustrated well in table 2 which we composed
for the Es = .24 (Rl = 2R2) rectangle according to (25). |

Table 2
Point of max. |V8] for the Es = 4.2} rectangle

e VEE, 5 M meXER, &)

1.11 1.00 0.726 21.2 0.720 0.323
1.4 0.939 0.650 h2.h 0.712 0.309
2.83 0.824 0.493 70.7 0.709 0.303
5.66 0.766 0.399 ® 0.705 0.295
10.6 0.735 0.352

If Bs = , i.e., ?2 = 00 and we have, instead of a rectangle, an
unlimited strip then the temperature field is one-dimensional and the high-
est value of the heat flow for all Bi is attained at the v = + 1 bound-
aries of the strip.

5. According to the meaning of the theorem on the maximum temperature
gradient on each curve joining the thermal center of the body to surface
points where the temperature equals GS(T) exactly or less, a point must
exist where the temperature gradient reaches a maximum and this point is
certainly located within the body. If we draw thermal current lines from
the center of the body to the surface points mentioned then on each of such
lines, its maximum temperature gradient will be its maximum heat flow.

The equation of the curve formed from such points of maximum heat flow
was derived above [see (19)].

It is understandable that a point from the system (12) lies on the curve
(19) corresponding to the Bi value.

The equation of the curve of the maximum |V6| for the temperature field
of a rectangle in the regular region stage is:

2 b

2 2 2 2 Y 2
(31) 2c0t“y, cotu, tan p,l{ tan“u,n = cot'y, tan “1% + cot p,tan"u N
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In the square case, the equation of the curve of heat flow maximums is
simplified considerably:
2 2 2 2
(32) 2tan“ug tan uy = tan“u§ + tan“un
These curves are shown on figure 1 for the Bi = 1.5, Bi = @ and
Bi = 3 values. It is easy to note that these curves are homothetic for a
square, The linear dimensions of the curves increase as Bi decreases

according to the law:

(33) .
P
The lines of greatest heat flow for a rectangle with an ;i = 2 ratio
2

of the sides have approximately the same shape (fig. 2), as for a square.

n
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Figure 1 Figure 2
1-Bi=153;2-Bi=33;3-Bi=o 1 - BiV =1,113; 2 - BiV =
3 - Biv =

The displacement of the maxirmum heat flow values to the body center is
notable here as the intensity of the healt exchange increases. It is under~
standable that this approximation is bounded by the BiV = o0 line. The
curves, located near the rectangle vertex, correspond to the lesser values
of BiV . |

Finally, for Bi, value determined from (31) when Z = y=1:




(3L)
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2 2
2 = cot wy o+ cot Mo

the line of maximum heat flow passes only through one point of the rectangle -

through its vertex.

For a square, i =k, = and from (3h) and (22) there is obtained that

for Biv

= E that the line of greatest heat flow passes through its vertex.

For a rectangle with the Es = 4.2y criterion, the appropriate value is

Biv = 0.83 ,
January, 195h
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